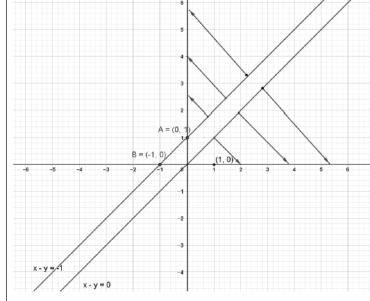
LINEAR PROGRAMMING PROBLEMS

- **1.** (B) 140
- 2. (C) half-plane that neither contains the origin nor the points on the line 2x+3y=6
- **3.** (D) infinite
- **4.** (A) I quadrant
- 5. (D) half plane that neither contains the origin nor the points on the line 3x + 2y = 6
- **6.** (D) zero
- **7.** (c) 31
- 8. (D) $2x + y \ge 10$, $x \ge 0$, $y \ge 0$
- 9. (A) $x + 2y \ge 3$
- **10.** (a) $x + 2y \le 5$; $x + y \le 4$
- 11. (A) Feasible region
- **12.** Find

Sol.

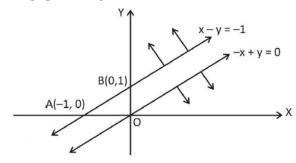


Since feasible region is empty, there is no solution to the problem.

13. Maximize

Solution:

The graph of the given constraints is



[1]

 $(1\frac{1}{2})$

for correct graph

 $\binom{1}{2}$

Here, the feasible region is empty.

So, there exists no solution to the given LPP.

[1]

appliedmaths.site

14. Two Ans

Let us assume that tailor A works for x days and tailor B works for y

days to complete the job.

Let Z denote the total labour cost.

The LPP for the given problem is:

Minimize Z = 1500x + 2000y Subject to constraints

subject to constraints,

 $6x+10y \ge 60 \text{ or } 3x+5y \ge 30$

15. The

16. A

Q-23 Let 'x' hectares and 'y' hectares of land be allocated to crop A and Crop B

Max
$$Z = 8000x + 9500y$$
. $\frac{1}{2}$ Mark

Subject to
$$x + y \le 10$$
; $2x + y \le 50$; $x \ge 0$ and $y \ge 0$ 1½ mark

17. A

Let the number of hardcopy and paperback copies be x and y respectively \Rightarrow Maximum profit Z = (72x + 40y) - (9600 + 56x + 28y) = 16x + 12y - 9600

Subject to constraints:

$$x + y \le 960$$

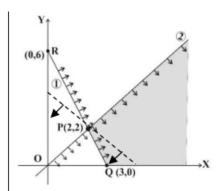
$$5x + y \le 2400$$

$$x, y \ge 0$$

1

 $\frac{1}{2}$

18. The



Corner Point	Z=3x+2y
P (2, 2)	10
Q (3, 0)	9

The smallest value of Z is 9. Since the feasible region is unbounded, we draw the graph of 3x + 2y < 9. The resulting open half plane has points common with feasible region, therefore Z = 9 is not the minimum value of Z. Hence the optimal solution does not exist.

19. There

Sol.

Let x kg of nitrogen and y kg of phosphoric acid is used for minimum cost.

∴ the objective function is

$$Minimize Z = 6x + 5y$$

Subject to the constraints 10% $\times x + 5\% \times y \ge 14$ or $2x + y \ge 280$

and 6%
$$\times x + 10\% \times y \ge 14$$
 or $3x + 5y \ge 700$

$$x, y \ge 0$$

Note: * Marks should be awarded for the formation of equations 2x + y = 280 and

3x + 5y = 700 instead of inequations in Hindi medium only.

1

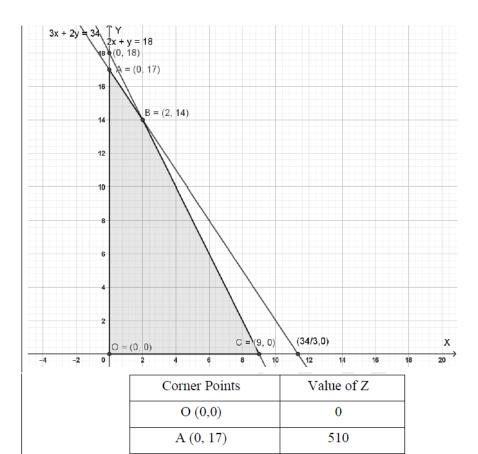
1

1/2

1 1/2

appliedmaths.site

20. Solve Sol.



B (2,14)

C (9, 0)

520

450

1 for correct table

 $1\frac{1}{2}$ for

correct

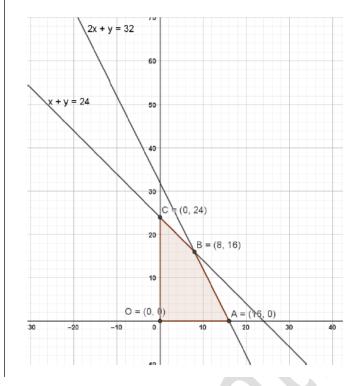
graph

1/2

: Maximum Z = 520 at B (2, 14)

21. Maximise

Sol.



Corner Points	Value of Z
O (0,0)	0
A (16,0)	4800
B (8,16)	5440 → Max Value
C (0,24)	4560

So Z is maximum at B (8,16)

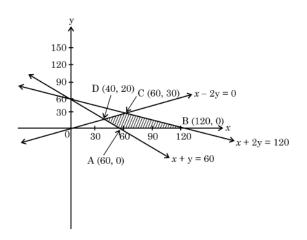
Max Value of Z = 5440

(2)

(1)

22. Minimise

Sol.



1½ for correct graph

Corner Points	Z = 5x + 10y
A (60, 0)	300
B (120, 0)	600
C (60, 30)	600
D (40, 20)	400

1 for correct table

Z is minimum at A(60, 0)

1/2

1

2

23. Formulate

Ans. Let x and y denote the number of rings and chains respectively

Maximize Z = 300 x + 190 ySubject to constraints

٦

$$x+y\leq 24$$

$$x+\frac{y}{2}\leq 16$$

$$x, y \ge 0$$

24. A

Let x be the number of units of Product A produced per day and y be the number of units of Product B produced per day The objective is to **maximize the profit**, which is given by:

1/2

$$Z = 30 x + 40 y$$

subject to the following constraints:

1

$$4x + 6y \le 500$$

$$x \le 80$$

$$y \leq 60$$

$$x \ge 0, y \ge 0$$

11/2

25. A

Let the number of necklaces manufactured be $\,x$, and the number of bracelets manufactured be $\,y$.

According to question,

$$x + y \le 25$$
 and

$$\frac{x}{2} + y \le 14$$

The profit on one necklace is ₹ 100 and the profit on one bracelet is ₹ 300.

Let the profit (the objective function) be Z, which has to be maximized.

Therefore, required LPP is

Maximize
$$Z = 100x + 300y$$

Subject to the constraints

$$x + y \le 25$$

$$\frac{x}{2} + y \le 14$$

$$x, y \ge 0$$

26. A

Ans

Let x packets of food P and y packets of food Q be mixed. The LPP is: Minimize Z = 6x + 3y

subject to constraints

$$12x + 3y \ge 240$$
 or $4x + y \ge 80$

$$4x + 20y \ge 460$$
 or $x + 5y \ge 115$

$$6x + 4y \le 300$$
 or $3x + 2y \le 150$

$$x \ge 0, y \ge 0$$

1

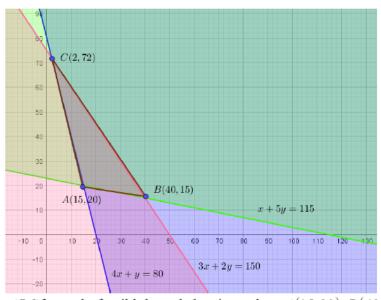
1/2

1

1/2

1½

1/2



2 marks for the correct graph.

1

ABC forms the feasible bounded region, where A(15,20), B(40,15) and C(2,72).

Now,
$$Z_A = 150$$
, $Z_B = 285$, $Z_C = 228$

Z is minimum at A(15,20).

 $Z_{\min} = 150$, when 15 packets of food P and 20 packets of food Q are mixed.

27. A **Ans.**

Types of boxes	Thickness (in cm)	Weight (in kg)
Type 1	6	1
Type 2	4	$1\frac{1}{2}$
Max	96 cm	21 kg
Availability		

Let the two types of boxes be x and y respectively

Let Z denote the maximum number of books that can be accommodated in the shelf

LPP is

$$\therefore Z = x + y$$

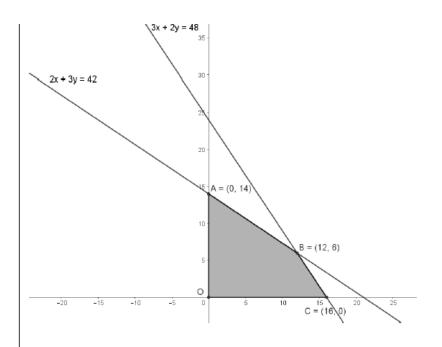
Subject to constraints

$$6x + 4y \le 96$$
 or $3x + 2y \le 48$
 $x + \frac{3}{2}y \le 21$ or $2x + 3y \le 42$

$$x, y \ge 0$$

1

 $1\frac{1}{2}$



1½ For graph with correct region

Here, $(Z)_A = 14$, $(Z)_B = 18$, $(Z)_C = 16$

So, Z is maximum at B

Hence, the shelf should be filled with 12 books of type 1 and 6 books of type 2

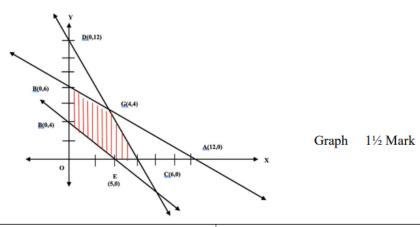
1

28. A

Q-33 Let 'x' and 'y' be the number of units of items M and N respectively.

We have :
$$x \ge 0$$
, $y \ge 0$

$$x + 2y \le 12$$
; $2x + y \le 12$; $x + \frac{5}{4}y \ge 5$. 1½ Mark Max $Z = 600x + 400$ y 1 Mark



Corner Point	Z = 600x + 400y
E: (5,0)	3000
C: (6,0)	3600
G: (4,4)	4000 (Maximum)
B: (0,6)	2400
F: (0,4)	1600

Hence maximum profit is ₹4000 when 4 units of each item M and N are produced. 1 Mark

appliedmaths.site

29. Rahul

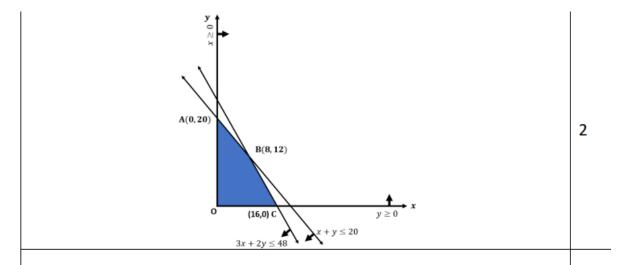
Let the number of tables and chairs be x and y respectively (Max profit) Z = 22x + 18y

Subject to constraints:

$$x + y \le 20$$
$$3x + 2y \le 48$$
$$x, y \ge 0$$

1.5

is



The feasible region OABCA is closed (bounded)

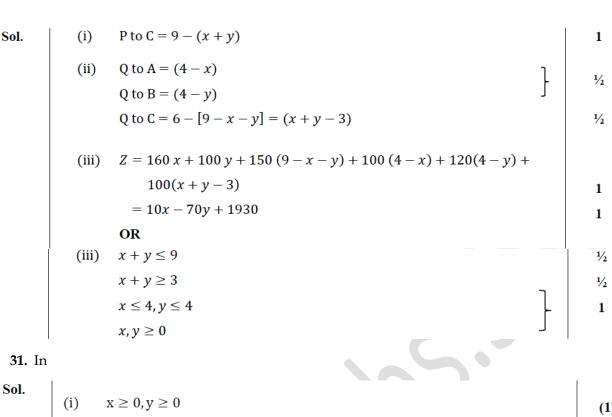
Corner points	Z = 22 x + 18 y
O (0,0)	0
A (0,20)	360
B (8,12)	392
C (16,0)	352

1.5

Buying 8 tables and 12 chairs will maximise the profit

CASE-BASED QUESTIONS

30. There

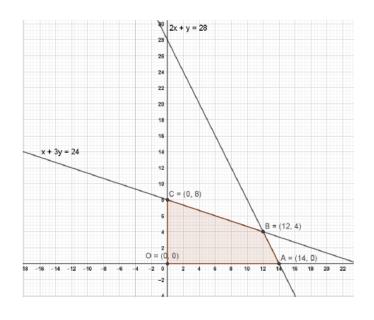


(1) (a) $2x - y \le 0$, (ii) **(1)** $2x + y \le 200$ **(1)** OR **(1)** (b) $2x + y \le 200$, (ii) **(1)** $2x - y \ge 0$ Corner points of R_1 are A(0,50), B(20,40), C(50,100) and D(0,200)(iii) $\mathbf{Z_A} = \mathbf{100}; \ \mathbf{Z_B} = \mathbf{180}; \mathbf{Z_C} = \mathbf{450}; \ \mathbf{Z_D} = \mathbf{400}$ $(\frac{1}{2})$ So, Z is maximum at C and maximum value of Z = 450

32. A factory

Sol. (i) Z = 10x + 20y (1)

(ii) $x + 3y \le 24$ (iii) (a) other constraints are $2x + y \le 28$ $x \ge 0$ $y \ge 0$

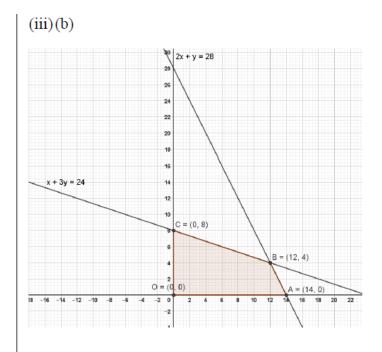


(1)

Corner Points	Value of Z
O (0,0)	0
A (14,0)	140
B (12,4)	200 → Max value
C (0,8)	160

(1)

∴ P is maximum at B (12,4); which is ₹ 200



(1)

Corner Points	Value of Z
O (0,0)	0
A (14,0)	140
B (12,4)	200 → Max value
C (0,8)	160

(1)

12 bats and 4 rackets

33. A

Solution:

Let the mixture contain $x\ kg$ of food F_1 and $y\ kg$ of food F_2 . Then, LPP becomes

(a) Minimize Z = 5x + 7y

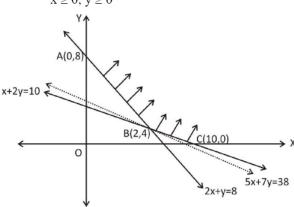
Subject to the constraints

$$2x + y \ge 8$$

$$x + 2y \ge 10$$

$$x \ge 0, y \ge 0 \tag{1}$$

 $\left[\frac{1}{2}\right]$



(b) The corner points are A(0, 8), B(2,4) and C(10, 0). [1]

The value of Z at these corner points are

$$Z_A = 56;$$
 $Z_B = 38;$ $Z_C = 50$ $\left[\frac{1}{2}\right]$

Since the feasible region is unbounded, we draw the graph of

$$5x + 7y < 38$$
.

As the graph of 5x + 7y < 38 does not have any point common with the Feasible region, so the minimum cost of the mixture is $\stackrel{?}{\underset{?}{?}}$ 38. [1]

Sol.

(i)	x + 2y = 12					1
-----	-------------	--	--	--	--	---

(ii)
$$4x + 5y = 20$$

(iii) (a)

$$x + 2y \le 12$$
, $4x + 5y \ge 20$,

$$2x + y \le 12,$$

$$x \ge 0, y \ge 0$$

OR

(iii) (b)

Corner Points	Value of Z
B (6,0)	3600
X (4,4)	4000
C (0,6)	2400
E (0,4)	1600
F (5,0)	3000

Maximum value of Z = 4000

1/2

1/2

1/2

1

1/2

1

1/2

11/2

35. A diet

36. If a

(i) Let the distance the man travels at 25 km/hr be denoted by x and the distance he travels at 40 km/hr be denoted by y

Linear programming problem is

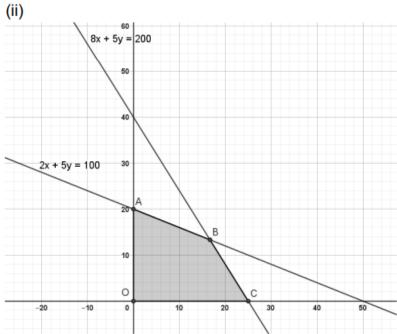
Objective function is to Maximize Z = x + y

Subject to the constraints:

$$\frac{x}{25} + \frac{y}{40} \le 1 \text{ i.e., } 8x + 5y \le 200$$

$$2x + 5y \le 100$$

$$x \ge 0, y \ge 0$$



11/2

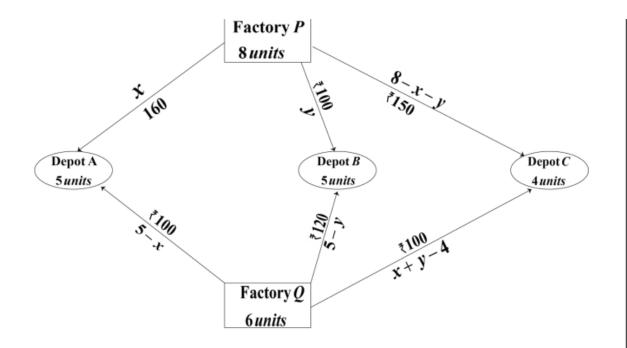
Corner Points	Value of Z
0(0,0)	0
A(0,20)	20
$B\left(\frac{50}{3}, \frac{40}{3}\right)$	30
C(25,0)	25

Thus, the maximum distance the man can travel within one hour is 30 km.

1/2

37. A

(i) Let the factory P supply x units per week to depot A and y units to depot B so that it supplies 8-x-y units to depot C. Obviously $0 \le x \le 5, 0 \le y \le 5, 0 \le 8-x-y \le 4$. The given data can be represented diagrammatically as:



Thus, total transportation cost (in ₹)

$$= 160x + 100y + 150(8 - x - y) + 100(5 - x) + 120(5 - y) + 100(x + y - 4) = 10(x - 7y + 190).$$

Hence the given problem can be formulated as an L.P.P as:

Minimize
$$Z = 10(x - 7y + 190)$$

subject to the constraints

$$x+y \ge 4$$
,

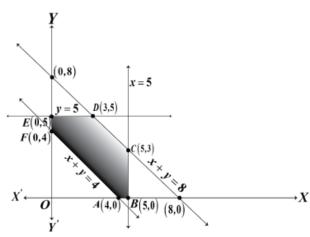
$$x+y \leq 8$$
,

$$x \leq 5$$

$$y \leq 5$$

$$x \ge 0, y \ge 0$$

(ii) The feasible region corresponding to these in equations is shown shaded in the figure given below.



appliedmaths.site

Linear Programming

1

1

Corner Points	Value of $Z = 10(x - 7y + 190)$
A (4,0)	1940
B (5,0)	1950
C (5,3)	1740
D (3,5)	1580
E (0,5)	1550 →Minimum
F (0,3)	1690

We observe that Z is minimum at point E(0, 5) and minimum value is $\mathbf{\xi}$ 1550.

Hence x = 0, y = 5. Thus for minimum transportation cost, factory P should supply 0, 5, 3 units to depots **A**, **B**, **C** respectively and factory **Q** should supply 5, 0, 1 units respectively to depots **A**, **B**, **C**.

38. S & D

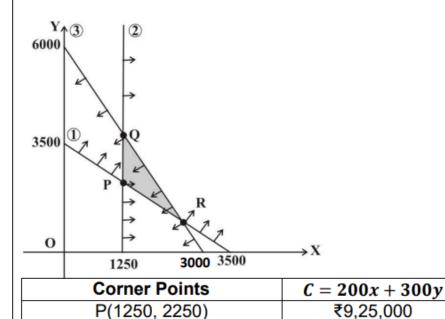
Let the company produces x and y gallons of alkaline solution and base oil respectively, also let \mathcal{C} be the production cost.

Min C = 200x + 300y subject to constraints:

$$x + y \ge 3500 \dots (1)$$

 $x \ge 1250 \dots (2)$
 $2x + y \le 6000 \dots (3)$

 $x, y \ge 0$



1

appliedmaths.site

Q(1250, 3500)	₹13,00,000		
R(2500, 1000)	₹8,00,000		
Minimum and in 0.00,000 when 0500 relland of alkaling colutions			

Minimum cost is 8,00,000 when 2500 gallons of alkaline solutions & 1000 gallons of base oil are manufactured.

1