TIME-BASED DATA

1. (C) Seasonal variations

2. (B) 40, 42, 44

3. (a) $y_c = a + bx$

4. (A) $y_c = 14 + 1.54x$

5. (c) 22, 29, 35, 41

6. (B) I – b – iii; II – c – i; III – a – ii

7. (C) Secular trend variations

8. (c) 47, 55, 53

9. d) Irregular

10. (C) $\frac{a+c+d+e}{4}$

11. The

Year	Rain fall	3 year moving total	3 year moving	
	(in mm)		average	1 mark for 3-
2001	1.2			year moving
2002	1.9	5.1	1.7	totals
2003	2	5.3	1.77	+
2004	1.4	5.5	1.83	1 mark for 3-
2005	2.1	4.8	1.6	year moving
2006	1.3	5.2	1.73	averages
2007	1.8	4.2	1.4	
2008	1.1	4.2	1.4	
2009	1.3			

12. Fit

Year	Production	Origin = 2004	X^2	XY
	(Y)	(X)		
2001	30	-3	9	-90
2002	35	-2	4	-70
2003	36	-1	1	-36
2004	32	0	0	0
2005	37	1	1	37
2006	40	2	4	80
2007	36	3	93	108
2009	$\Sigma Y = 246$	$\sum XY = 0$	$\Sigma X^2 = 28$	$\Sigma XY = 29$

[1]

Trend equation is $Y_C = a + bX$; and

Normal equations are:

$$a = \frac{\Sigma Y}{n} = \frac{246}{7} = 35.14$$
; and $b = \frac{\Sigma XY}{\Sigma X^2} = \frac{29}{28} = 1.03$

$$\Rightarrow$$
 Trend equation is $Y_C = 35.14 + 1.03 \text{ X}$

Thus, trend value for 2008 is
$$[35.14 + 1.03(4)] = 39.26$$
 $\left[\frac{1}{2}\right]$

13. Find Ans

Year	Production	Five yearly moving total	Five yearly moving averages
2012	16	-	-
2013	14	-	-
2014	20	16+14+20+18+ 22=90	90/5=18
2015	18	14+20+18+22+ 17=91	91/5=18.2
2016	22	20+18+22+17+ 19=96	96/5=19.2
2017	17] -	18+22+17+19+ 21=97	97/5=19.4
2018	19	22+17+19+21+ 20=99	99/5=19.8
2019	21	-	-
2020	20	-	-

1 mark each for the 3rd and 4th column

[1]

Hence the trend values are 18, 18, 2, 19, 2, 19, 4, 19, 8

14. For

15. Find

_				_	
	Year	Υ	3 yearly	3 yearly moving average(Trend)	1M for
			moving total	(in ₹ lakh)	3-yearly
	2016	25			moving
	2017	30	87	29	totals
	2018	32	102	34	
	2019	40	117	39	1M for
	2020	45	135	45	3-yearly
	2021	50			moving
					average
1					1

16. Given

Ans

$\operatorname{Year}(x_i)$	Index number (Y)	$X = x_i - A$ $= x_i - 2018$	X^2	XY
2016	160	-2	4	-320
2017	185	-1	1	-185
2018	220	0	0	0
2019	300	1	1	300
2020	510	2	4	1020
<i>n</i> = 5	$\sum Y = 1375$	$\sum X = 0$	$\sum X^2 = 10$	$\sum XY = 815$

1 mark for the correct table

Now,
$$a = \frac{\sum Y}{n} = \frac{1375}{5} = 275$$
 and $b = \frac{\sum XY}{\sum X^2} = \frac{815}{10} = 81.5$

Thus the required equation of the best fitted trend line is

$$y=a+bx \Rightarrow y=275+81.5x$$

1

1

Trend values are:

$$2016 \rightarrow 275 + 81.5(-2) = 112$$

$$2017 \rightarrow 275 + 81.5(-1) = 193.5$$

$$2018 \rightarrow 275 + 81.5(0) = 275$$

$$2019 \rightarrow 275 + 81.5(1) = 356.5$$

$$2020 \rightarrow 275 + 81.5(2) = 438$$

18. The

Year	Quarters	Y	4-Quarterly Moving Total	4 Quarterly Moving average (Centered) (in ₹crore)
	Q_1	12		
	Q_2	14		
2018	Q_3	18	64	16.75
	Q_4	20	70 70	17.75
	Q_1	18	72 74	18.25
2019	Q_2	16	74 76	18.75
	Q_3	20	85	20.125
	Q_4	22	93	22.25
	Q_1	27	103	24.50
2020	Q_2	24	117	27.5
	Q_3	30		
	Q_4	36		

 $1\frac{1}{2}$ for 4 quarterly moving totals

 $1\frac{1}{2}$ for 4 Quarterly moving average (Centered)

19. Fit a

Y
'8
2
4
)
8(
10
98
<i>XY</i> 572
) (

1

$$a = \frac{\sum Y}{n} = \frac{532}{7} = 76,$$
 $b = \frac{\sum XY}{\sum X^2} = \frac{672}{28} = 24$
 $Y_c = a + bX, Y_c = 76 + 24X$

1

Estimated sales = Y_c for 2023 = 76 + 24 × 6 = ₹220 lacs

1

20. Compute **Sol.**

Year	Index	4 yearly	4 yearly	Centered	Centered
	Number	moving	moving	Total	moving
		total	Average		average
2001	2450				
2002	1470				
		7870	1967.5		
2003	2150			3625	1812.5
		6630	1657.5		
2004	1800			3435	1717.5
		7110	1777.5		
2005	1210			3592.5	1796.25
		7260	1815		
2006	1950			3805	1902.5
		7960	1990		
2007	2300			4297.5	2148.75
		9230	2307.5		
2008	2500			4797.5	2398.75
		9960	2490		
2009	2480				
2010	2680				

4 yearly moving total-1mark 4 yearly moving average - 11/2 marks centered total - 1 mark centered moving average - 11/2

marks

21. Fit a

Year (x_i)	Index Number (Y)	$X = \frac{x_i - A}{0.5}$ $= \frac{x_i - 2013.5}{0.5}$	X^2	XY	$Y_t = a + bx$
2011	210	-5	25	-1050	234.17 + (-5)1.64 = 225.97
2012	225	-3	9	-675	229.25
2013	275	-1	1	-275	232.53
2014	220	1	1	220	235.81
2015	240	3	9	720	239.09
2016	235	5	25	1175	242.37
n = 6	1405	$\sum X=0$	$\sum X^2 = 70$	$\sum XY = 115$	

 $2\frac{1}{2}$ for the correct table

$$a = \frac{\sum Y}{n} = \frac{1405}{6} = 234.17 \text{ (approx.)}$$

$$b = \frac{\sum XY}{\sum X^2} = \frac{115}{70} = 1.64 \text{ (approx.)}$$

Required line is Y = a + bx = 234.17 + 1.64 x

1

22.Fit a

1 1/2

Sol.

Consider year 2014 as the year of origin. Calculation of trend values by method of least squares.

Year	Sales (in lakh ₹) y	Deviations from 2014 (x)	Squares of Deviations (x ²)	Sales deviation (xy)
2010	65	- 4	16	- 260
2012	68	-2	4	- 136
2013	70	- 1	1	- 70

2014	72	0	0	0
2015	75	1	1	75
2016	67	2	4	134
2019	73	5	25	365
n = 7	$\Sigma y = 490$	$\sum x = 1$	$\sum x^2 = 51$	∑xy = 108

(2 for correct table)

The equation of the straight-line trend is

$$y_c = a + bx$$

Two normal equations are

$$\sum y = na + b\sum x$$

$$\sum xy = a\sum x + b\sum x^2$$

$$\Rightarrow$$
 490 = 7a + b and 108 = a + 51b

 \Rightarrow a = 69.9 and b = 0.75

$$y_c = 69.9 + 0.75x$$
 (1)

Thus, trend values are

$$y_{2010} = 69.9 + 0.75(-4) = 66.90$$

$$y_{2012} = 69.9 + 0.75(-2) = 68.40$$

$$y_{2013} = 69.9 + 0.75(-1) = 69.15$$

$$y_{2014} = 69.9 + 0.75(0) = 69.90$$

$$y_{2015} = 69.9 + 0.75(1) = 70.65$$

$$y_{2016} = 69.9 + 0.75(2) = 71.40$$

(1)

(1 for

correct

trend

values)

23.Fit a **Sol.**

Year	Index	$X = x_i - A$	X^2	XY	$Y_t = a + bX$
	Number (Y)	$= x_i - 2014$			
2010	65	-4	16	-260	69.75
					+ (-4)0.75
					= 66.75
2012	68	-2	4	-136	68.25
2013	70	-1	1	-70	69
2014	72	0	0	0	69.75
2015	75	1	1	75	70.5
2016	67	2	4	134	71.25
2019	73	5	25	365	73.5
n = 7	$\sum Y = 490$	$\sum X = 1$	$\sum X^2 = 51$	$\sum XY = 108$	

2½ for the correct table

Equation of trend line is Y = a + bX

$$\sum Y = na + b \sum X$$
 and $\sum XY = a \sum X + b \sum X^2$

24.Fin **Sol.**

Year	Sales	4 yearly	4 yearly	Centered
		moving	moving	moving
		total	Average	average
2015	108			
2016	112			
		450	112.5	
2017	110			116.5
		482	120.5	
2018	120			121.5
		490	122.5	
2019	140			121.25
		480	120	
2020	120			121.875
		495	123.75	
2021	100			
2022	135			

4 yearly moving total: 1½ marks
4 yearly moving average: 1½ marks
centered moving average: average:

2 marks

25. The Take 2019 as the middle year, i.e., A = 2019

Year (x _i)	Rice Production (million tonnes) (Y)	$X = x_i - A$	<i>X</i> ²	XY	Trend Values $Y = a + bX$
2017	9.5	-2	4	-19.0	9.40
2018	10.0	-1	1	-10.0	10.02
2019	10.5	0	0	0.0	10.64
2020	11.2	1	1	11.2	11.26
2021	12.0	2	4	24.0	11.88
Total	53.2	0	10	6.2	

$$a = \frac{\sum Y}{n} = \frac{53.2}{5} = 10.64$$
$$b = \frac{\sum XY}{\sum X^2} = \frac{6.2}{10} = 0.62$$

∴The trend equation is y = 10.64 + 0.62 x

For the year 2025; y = 10.64 + 0.62(6) = 14.36 million tonnes

26. The

Month	Number of vehicles (Thousands)	3-Month Moving Total	3-Month Moving Average
March	30	-	-
April	35	103	34.33
May	38	109	36.33
June	36	114	38.00
July	40	118	39.33
August	42	121	40.33
September	39	126	42.00
October	45	132	44.00
November	48	140	46.67
December	47	-	-

Correct graph

2

appliedmaths.site

Time Based Data

for correc t table

3 marks

1/2

1/2

1/2

1/2

3 marks for correc t table

27. Fit a Here, number of observations n = 11(odd number)

Year (t)	Production	$x = t_i - 1967$	<i>x</i> ²	xy
	(y)			
1962	2	-5	25	-10
1963	4	-4	16	-16
1964	3	-3	9	-9
1965	4	-2	4	-8
1966	4	-1	1	-4
1967	2	0	0	0
1968	4	1	1	4
1969	9	2	4	18
1970	7	3	9	21
1971	10	4	16	40
1972	8	5	25	40
Total	$\sum y = 57$	$\sum x = 0$	$\sum x^2 = 110$	$\sum xy = 76$

2 marks for correct table

Year 1967 is taken as year of origin.

The normal equations are $\sum y = na + b\sum x$ and $\sum xy = a\sum x + b\sum x^2$

Since, $\sum x = 0$ i.e., deviation from actual mean is zero,

we have
$$a = \frac{\sum y}{n} = \frac{57}{11} = 5.18$$
, $b = \frac{\sum xy}{\sum x^2} = \frac{76}{110} = 0.69$

Therefore, the required equation of the trend line y = 5.18 + 0.69x

The trend values are

1.73, 2.42, 3.11, 3.8, 4.49, 5.18, 5.87, 6.56, 7.25, 7.94, 8.63

2

28. The

Yearl Quarte	-	Small scale industry	4-quarterly moving total	4-quarterly moving average	4-year centered moving average
	I	39			

appliedmaths.site

Time Based Data

	II	47			
			162	40.5	
	III	20			44.125
2020			191	47.75	
	IV	56		 	49 .25
			203	50.75	
	1	68			- 56.5
			249	62.25	
	II	59			64.25
			265	66.25	
2021	III	66			6 8.75
			285	71.25	
	IV	72			7 1 .375
			286	71.5	
	1	88			7 0.75
	L		280	70.00	
	II	60	075	00.75	69 .375
			275	68.75	
2022	III	60			
	IV	67			

1½ marks each for 3rd and 4th column

2 marks for last column

29.When Sol.

(i)

Year (x_i)	Index Number (y)	$x = \frac{x_i - A}{0.5}$	x ²	ху
1996	6.5	-5	25	-32.5
1997	5.3	-3	9	-15.9
1998	4.3	-1	1	-4.3
1999	6.1	1	1	6.1
2000	5.6	3	9	16.8
2001	7.8	5	25	39
n = 6	$\sum y = 35.6$	$\sum x = 0$	$\sum x^2 = 70$	$\sum xy = 9.2$

(1) for correct table

 $a = \frac{\sum y}{n} = \frac{35.6}{6}$, $b = \frac{\sum xy}{\sum x^2} = \frac{9.2}{70} = 0.13$

(1)

 \div Equation of straight-line trend is given by

$$y = a + bx = 5.9 + 0.13x$$

 $(\frac{1}{2})$

(ii) (a) Trend Values

1996
$$5 \cdot 9 + (-5) \times 0 \cdot 13 = 5 \cdot 25$$

1997 $5 \cdot 9 + (-3) \times 0 \cdot 13 = 5 \cdot 51$
1998 $5 \cdot 9 + (-1) \times 0 \cdot 13 = 5 \cdot 77$
1999 $5 \cdot 9 + (1) \times 0 \cdot 13 = 6.03$
2000 $5 \cdot 9 + (3) \times 0 \cdot 13 = 6.29$

 $5 \cdot 9 + (5) \times 0 \cdot 13 = 6.55$

(1)
mark
for
correct
trend
values

Expected sales trend for 2002

$$=5.9+0.13\left(\frac{2002-1998.5}{0.5}\right)$$

= ₹ 6.81 lakhs

 $(\frac{1}{2})$

3 6.81 lakiis

OR

2001

Year (x _i)	Profit (y)	$x = x_i - A$	x ²	ху
2004	114	-3	9	-342
2005	130	-2	4	-260
2006	126	-1	1	-126
2007	144	0	0	0
2008	138	1	1	138
2009	156	2	4	312
2010	164	3	9	492
n = 7	$\sum y = 972$	$\sum x = 0$	$\sum x^2 = 28$	$\sum xy = 214$
		<u></u>	<u>_</u>	

(1) for correct table

$$a = \frac{\sum y}{n} = \frac{972}{7} = 138.86, b = \frac{\sum xy}{\sum x^2} = \frac{214}{28} = 7.64$$

 $(\frac{1}{2})$

So, required equation of straight-line trend is

$$y = a + bx = 138.86 + 7.64x$$

 $\left(\frac{1}{2}\right)$

30. The

Ans.

(a)			
y	x	x^2	xy
3	-2	4	-6
6	-1	1	-6
9	0	0	0
16	1	1	16
24	2	4	48
$\sum y = 58$		$\sum x^2 = 10$	$\sum xy = 52$

11/2

Trend value is
$$y = \frac{\sum y}{5} + \frac{\sum xy}{\sum x^2} x$$

 $y = 11.6 + 5.2 x$

1/2

y	x	x^2	xy			
9	-2	4	-18			
18	-1	1	-18			
21	0	0	0			
29	1	1	29			
38	2	4	76			
$\sum y = 115$		$\sum x^2 = 10$	$\sum xy = 69$			

 $1\frac{1}{2}$

Trend value is
$$y = \frac{115}{5} + \frac{69}{10}x$$

 $y = 23 + 6.9 x$

1/2

(b) For $\mathbf{x} = \mathbf{3}$, we have

$$y = 23 + 6.9(3) = 43.7$$

1

(c) For x = 3, we have

$$y = 11.6 + 5.2(3) = 27.2$$

1

31. When

Year	Y	X=Year - 2003	X ²	XY
2001	160	-2	4	-320
2002	185	-1	1	-185
2003	220	0	0	0
2004	300	1	1	300
2005	510	2	4	1020
	1375		10	815

2 Marks for table

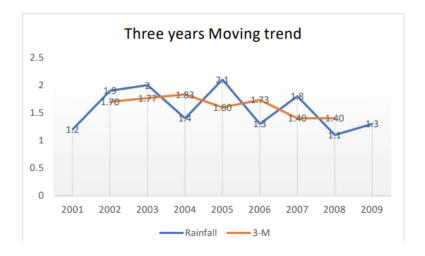
$$a = \frac{\sum Y}{n} = \frac{1375}{5} = 275$$

1/2 Mark

$$b = \frac{\sum XY}{\sum X^2} = \frac{815}{10} = 81.5$$

½ Mark

$$Y_c = a + bX$$


$$Y_c = 275 + 81.5 X$$

The estimated value for 2008 will be $275 + 81.5 \times 5 = 275 + 407.5 = 682.5$ 1 Mark

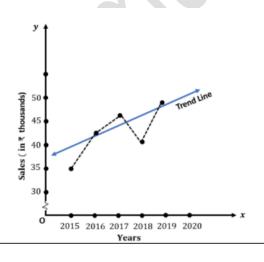
32.The

		3 years	3 years
37	D : C 11/:	moving	moving
Year	Rainfall(in cm)	total	average
2001	1.2		
2002	1.9	5.1	1.70
2003	2	5.3	1.77
2004	1.4	5.5	1.83
2005	2.1	4.8	1.60
2006	1.3	5.2	1.73
2007	1.8	4.2	1.40
2008	1.1	4.2	1.40
2009	1.3		

11/2 Marks for table

33.When

a)


Year	Υ	X	X ²	XY
2015	35	-2	4	-70
2016	42	-1	1	-42
2017	46	0	0	0
2018	41	1	1	41
2019	48	2	4	96
	212		10	25

$$a = \frac{\sum Y}{n} = \frac{212}{5} = 42.4$$
 and $b = \frac{\sum XY}{\sum X^2} = \frac{25}{10} = 2.5$

 $Y_C = 42.4 + 2.5X$

OR

OK		
Year	Υ	3-year moving average
2015	35	-
2016	42	41
2017	46	43
2018	41	45
2019	48	-

b) For year 2022,

$$Y_{2022} = 42.4 + 2.5(2022 - 2017) = 54.9$$

 \Rightarrow the estimated sales for year 2022 = $₹$ 54,900

c) $Y_C = 42.4 + 2.5X$ $\Rightarrow 67.4 = 42.4 + 2.5X$ $\Rightarrow X = 10$ Sales will be $\stackrel{?}{=}$ 67,400 in year (2017+ 10) = year 2027

appliedmaths.site

Time Based Data

1

1

2