INFERENTIAL STATISTICS

- 1. (A) 0
- 2. (b) accepted
- 3. (b) accepted
- 4. (B) 33
 - 5. (C) statistic
 - 6. (A) $t = \frac{\bar{x} \mu}{\left(\frac{S}{\sqrt{n}}\right)}$ 7. $t = \frac{\bar{x} \mu}{\frac{S}{\sqrt{n-1}}}$

 - 8. (A) increases then sampling distribution must approach normal distribution
 - 9. (A) 20
 - 10. (D) 2024
 - 11. (A) Systematic sampling
 - 12. (b) \bar{x}
 - 13. (A) $\frac{\bar{x} \mu}{\left(\frac{S}{\sqrt{n}}\right)}$
 - 14. b) Inferior quality
 - 15. (B) 33
 - 16. c) Statistic
 - 17. (D) Sample
 - 18. (B) sampling distribution
 - 19. Consider

Given:

$$H_0: \mu=35$$
, $H_1: \mu
eq 35$ $n=81$, $ar{x}=37.5$, $s=5$, $lpha=0.05$, $Z_{
m critical}=\pm 1.96$

Test Statistic:

$$Z = rac{ar{x} - \mu}{s/\sqrt{n}} = rac{37.5 - 35}{5/9} = 4.5$$

Decision:

Since
$$|Z|=4.5>1.96$$
, reject H_0 .

Conclusion:

The population mean is significantly different from 35 at the 5% level.

20. Fil

Sol.

(a)
$$t = 0$$

$$(b) - \infty$$
 to $+ \infty$

$$(c)$$
 (

21. A bulb

Hypotheses:

 $H_0: \mu = 20$, $H_1: \mu \neq 20$

Given data:

Sample: 24, 22, 27, 18, 20, 24, 22, 19

n=8, lpha=0.05, $t_{
m critical}=2.36$

Calculations:

$$ar{x}=rac{176}{8}=22,\quad s=\sqrt{rac{62}{7}}pprox 2.976$$
 $t=rac{22-20}{2.976/\sqrt{8}}pprox 1.90$

Decision:

|t|=1.90<2.36 \Rightarrow Do not reject H_0

Conclusion:

Insufficient evidence to reject the factory's claim.

Accept H_0

22. A

 H_0 : $\mu = 0.50 \ mm$

 $H_1: \mu = 0.50 \ mm$

Thus a two-tailed test is applied under hypothesis H_0 , we have

$$t = \frac{\bar{x} - \mu}{s} \sqrt{n - 1} = \frac{0.53 - 0.50}{0.03} \times 3 = 3.$$

1 Mark

Since the calculated value of t i.e. $t_{cal}(=3) > t_{tab}(=2.262)$, the null hypothesis H_0 can be rejected. Hence, we conclude that machine is not working properly. 1 Mark

23. A

$$E(X) = 60kg$$

1

Standard deviation of $\bar{X} = SE(\bar{X}) = \frac{\sigma}{\sqrt{n}} = \frac{9}{6} = 1.5 \ kg$

4

24 A

Sol.

$$\bar{x} = 0.742, \; \mu = 0.7$$

$$n = 10, s = 0.04$$

1/2

 H_0 : Null hypothesis : If there is no significant difference between \bar{x} and μ

 H_1 : Alternate hypothesis : If there is a significant difference between \bar{x} and μ

$$t = \frac{\frac{\bar{x} - \mu}{s}}{\frac{s}{\sqrt{n - 1}}} = \frac{0.742 - 0.7}{\frac{0.04}{\sqrt{9}}} = 3.15$$

 $1\frac{1}{2}$

$$Df = 9$$
 and $t_9(0.05) = 2.262$

Since
$$|t| = 3.15 > 2.262$$

1/2

: Null hypothesis is rejected

25. The

Sol.

Here,
$$\mu_0 = 50, \bar{x} = 55, n = 20$$
 and $S = 10$

 $(\frac{1}{2})$

 H_0 : $\mu = 50$ (The advertisement campaign was not successful)

 H_{α} : $\mu > 50$ (The advertisement campaign was successful)

The test statistic t is given by

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}} = \frac{55 - 50}{\frac{10}{\sqrt{20}}} = \frac{2\sqrt{5}}{2} = \sqrt{5} = 2.24 \tag{1\frac{1}{2}}$$

Degree of freedom = 20 - 1 = 19

Here,
$$t > t_{19}(0.05)$$
 as $2.24 > 1.729$

⇒ null hypothesis is rejected

i.e., Advertising campaign was successful

 $(\frac{1}{2})$

26. The

Sol. We are given

$$\mu$$
 = 50, \bar{x} = 55, SD = 10, n = 20

(1)

[1]

$$H_0$$
: $\mu = 50$

$$H_1: \mu > 50$$

$$t = \frac{\bar{x} - \mu}{\frac{SD}{\sqrt{n}}} = \frac{55 - 50}{\frac{10}{\sqrt{20}}} = 2.236$$
 (2)

 $t_{cal \, value} > t_{tab \, value}$

Hence H_0 is rejected.

So, Advertising Campaign was successful.

27. Ten

Solution:

We are given n = 10, $\overline{x} = 11.8$ kg and s = 0.15 kg

Let Null hypothesis be $H_0 = \mu = 12$ kg, and

Alternate hypothesis be H_1 ; $\mu \neq 12$ kg

Under H₀, the test statistic is

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n-1}}} = \frac{11.8 - 12}{\frac{0.15}{3}} = -4$$
 [1]

Since the tabulated value of t for d.f. = 9 is $t_{0.05} = 2.26$ and the calculated |t|

is much greater than the tabulated value, null hypothesis is rejected. Thus,

we conclude that the sample mean differs significantly from the intended mean of 12 kg. [1]

28. Ten

Ans

Null hypothesis H_0 : There is no significant difference between the sample mean and population mean.

1/2

1

1

 $\frac{1}{2}$

Alternate hypothesis H_1 : The sample mean is not the same as population mean.

Let the sample statistic t is given by $t = \frac{\bar{X} - \mu}{s/\sqrt{n}}$

For the given data : n = 10, $\sum_{i=1}^{10} x_i = 1160$, $\overline{X} = 116$ and $\sum_{i=1}^{10} (x_i - \overline{X})^2 = 864$

$$\Rightarrow s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{10} \left(x_i - \overline{X} \right)^2} = \frac{\sqrt{864}}{3}$$

Thus,
$$t = \frac{116 - 110}{\frac{\sqrt{864}}{3}} \times \sqrt{10} = \frac{\sqrt{15}}{2} \approx 2$$

Since |t| < 2.262, the null hypothesis is accepted.

i.e. mean height of the students of the college is 110 cm.

29. Hole

 H_0 : $\mu = 1.84$ cm (machine is working properly)

 H_1 : $\mu \neq 1.84$ cm (machine is not working properly)

1/2

For sample: $\bar{x}=1.85$ cm and $s=\sqrt{0.0064}=0.08$ cm At $\alpha=0.05$ and df = 15

1/2

1

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{1.85 - 1.84}{\frac{0.08}{\sqrt{16}}} = \frac{0.01}{0.08} \times 4 = 0.5$$

1/2

 $|t_{cal}| = 0.5 < t_{critical} = 2.131$ at $\alpha = 0.05$ and df = 15

1/2

∴ null hypothesis is accepted, there is no significant difference between the sample mean and the population mean, hence machine is working properly.

Here, population mean $(\mu) = 25$

Sample mean $(\bar{x}) = \frac{\sum x_i}{n} = \frac{138}{6} = 23$

Sample size (n) = 6

Consider, Null hypothesis H_0 : There is no significant difference between the sample mean and the population mean i.e., $(\mu_1 = \mu_2)$.

1/2

1/2

1

1

Alternate hypothesis H_{α} : There is no significant difference between the sample mean and the population mean i.e., $(\mu_1 \neq \mu_2)$.

Values of $(x_i - \bar{x})^2$ are 1, 9, 49, 9, 9 and 25

$$\therefore s = \sqrt{\frac{102}{5}} = 4.52$$

Now,
$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{23 - 25}{\frac{4.52}{\sqrt{6}}}$$

$$=-1.09$$

$$\Rightarrow |t| = 1.09$$

Since, calculated value $|t| = 10.763 < \text{tabulated value } t_5(0.01) = 4.132$

So, the null hypothesis is accepted.

Hence, the manufacturer's claim is valid at 1% level of significance.

31. A

Define Null hypothesis H_0 and alternate hypothesis H_1 as follows:

$$H_0: \mu = 0.50 \ mm$$

$$H_1: \mu \neq 0.50 \ mm$$

Thus a two-tailed test is applied under hypothesis \mathcal{H}_0 , we have

$$t = \frac{\bar{X} - \mu}{S} \sqrt{n - 1} = \frac{0.53 - 0.50}{0.03} \times 3 = 3$$

Since the calculated value of t=3 does not lie in the internal $-t_{0.025}$ to $t_{0.025}$ i.e., -2.262 to 2.262 for 10-1= 9 degree of freedom So we Reject H_0 at 0.05 level. Hence we conclude that machine is not working properly.